
Fuzzy Handoff Control in Edge Offloading

Fani Basic, Atakan Aral, Ivona Brandic
Institute of Information Systems Engineering

Vienna University of Technology, Vienna, Austria

{fani, atakan, ivona}@ec.tuwien.ac.at

Abstract— Edge computing is a promising paradigm that relies
on heterogeneous computing resources located at the edge of the
network, close to the end-user. Hence, applications with latency-
sensitive and compute-intensive tasks rely on edge resources
to offload and complete such tasks. In order to support non-
intermittent service in case of user mobility, most of existing
approaches focus on how to accelerate the handoff transfer time
and not how to reduce its frequency. Moreover, the handoff
mechanisms used in cellular networks do not consider the compu-
tational workload and therefore are not directly applicable to the
edge offloading scenario. Considering dense edge deployment, it is
vital to select the optimal edge node for offloading. Therefore, we
take into consideration bandwidth, processor speed and latency
capabilities in the proposed fuzzy logic node selection algorithm.
We evaluate the improvements of the proposed selection, for
perceived response time objective, in comparison to offloading to
the closest or highest bandwidth node. In addition, we propose a
handoff controller, to meet the same performance objective, when
the user is moving further from the currently selected edge node.
We evaluate our approach by offloading Directed Acyclic Graph
(DAG) models of real-world mobile applications. The results show
that we can significantly reduce both application response time
and monetary cost of execution, by controlling the number of
handoffs among edge nodes.

Index Terms— Mobile Edge Computing (MEC), handoff,
mobile offloading, fuzzy logic, control theory

I. INTRODUCTION

Nowadays, the mobile applications’ low-latency require-

ments and demands for executing complex tasks are increasing

rapidly. This is especially the case for emerging mobile appli-

cations such as face recognition, natural language processing,

interactive gaming, and augmented reality [1]. By allowing

resource constrained mobile devices to offload data- and

compute-intensive tasks to the remote cloud, we can improve

their battery lifetime and both storage and computation capa-

bilities. However, computation offloading (also known as cyber

foraging [2]) to the cloud infrastructure may result in longer

response time (RT) and higher network cost. Therefore, fog

computing paradigm proposes moving the computation to the

continuum between the data center and the user, reducing the

RT. In this paper, we consider the case, where edge nodes at

one hop distance to the user are utilized for task offloading,

usually referred as Mobile Edge Computing (MEC).

Each edge node within a small physical scope can provide

end-to-end latency low enough to meet the demands of time

sensitive applications. In sparse edge deployment the user

has only one or few available edge nodes to connect at

nearby location. On the contrary, in dense deployment [3],

numerous location-aware edge nodes are tactically spread in

many places (such as user residences and workplaces, streets,

subway stations, coffee shops, airports, etc.), and overlaps in

coverage areas are common. Thus, a user has multiple options

when selecting the optimal edge node for the services. Since

these nodes can differ significantly in computation capabilities

from each other, node nearest to the user is not always the best

choice in terms of perceived RT. Instead, a set of parameters

must be considered jointly during this selection process in

dense deployment, such as available bandwidth, processor

speed and latency. We use those parameters in the proposed

fuzzy logic-based algorithm with an intuitive idea of offloading

the arriving task to the edge node most suitable to serve

requests within expected RT, referred as the optimal node.

Fuzzy logic fits our purpose of handling imprecision in these

multiple input values caused by the dynamicity of network

and compute workloads. In non-linear systems with arbitrary

complexity and large number of inputs, fuzzy logic reasoning

is among the best applicable techniques [4]. In addition, fuzzy

logic can be easily tuned using expert knowledge through

manipulation of rules or fuzzy sets [5], therefore it is adaptable

to various application requirements.

Once the edge node is selected and user successfully of-

floads an application task, we still have to find solutions for the

issues that lead to degraded application performance such as

network congestion, node overload, failures and user mobility.

As the user is moving further from the currently selected edge

node, next offloaded tasks on that node can have degraded

performance far worse than physical distance may suggest [6].

A process called handoff, that is offloading upcoming requests

to a more suitable edge node in vicinity, can be effective in

such a scenario. However, frequent mobility of users causes

frequent handoffs among edge servers [7] and each handoff

may bring initial monetary and time cost. For instance, each

initialization of the task processing platform (e.g. container

or virtual machine (VM)) incurs delays and expenses. In this

paper, a handoff means the application moves to another node

after the completion of the active task.

In our mechanism, referred as the handoff controller, we

use control theory to avoid so-called ping-pong effect, in

which subsequent tasks are transmitted back and forth between

different edge servers in the surroundings. Running locally at

the client, the handoff controller tracks tasks and exchanges

information with the offloaded service running on the edge

nodes. In our controller design, measured RT is the monitored

variable that is used as output of our system and then compared

to the desired RT. The adoption of well-established, mathe-

matically grounded control theory in our work is motivated

by the ability to design and implement feedback loops to

guarantee the system stability and application performance

despite disturbances.

The main contributions of this paper are: (i) a fuzzy logic

algorithm that selects a target node based on its bandwidth,

processor and latency parameters; and (ii) a handoff controller

that takes application RT as the indicator to decide whether

to move the task execution to another node. We answer

the questions: “On which node should a task be offloaded
for the execution?” and “Is it an appropriate moment to
move execution to another node or not?” based on perceived

application performance and monetary cost of execution. At

the time we write, user mobility and consequently the handoffs

among edge servers is an open research challenge [7]. Handoff

or handover techniques for cellular networks are not directly

applicable, due to the intensive computation that has to be

considered in edge offloading scenario [8]. To the best of

our knowledge, this is the first attempt to use the well-

established control theory concepts to control handoffs in edge

offloading. While existing approaches aim to accelerate the

handoff transfer time [6], [8], the novelty of our work lies in

reducing the total number of performed handoffs with broadly

explored, mathematically ground techniques of control theory.

By using the Facerecognizer and Navigator real-world appli-

cation models, we show that this novel approach fulfills the

performance guarantees while avoiding frequent and repeated

handoffs, which in comparison to the the baseline approaches,

brings up to 86.14% shorter RT and 85.3% cost savings.

The rest of the paper is structured as follows. In Section

II, we describe our motivating scenario. Section III introduces

fuzzy logic and the proposed algorithm. In Section IV, control

theory background and the handoff controller design are pro-

vided. The experimental environment and results are presented

respectively in Section V and VI. Finally, we discuss related

work in Section VII and conclude the paper in Section VIII.

II. MOTIVATING SCENARIO

Proliferation of smart mobile devices has opened a door to

new futuristic, computationally intensive mobile applications

with near real-time requirements. We identify typical near

real-time request-response synchronous applications, appli-

cable to our approach, such as natural language process-

ing and question answering, live translation service, text-to-

speech functionality, virtual personal assistant, navigator and

voice/image/video recognition. In a face recognition scenario,

for instance, application RT would be the duration from when

the user device starts to transfer an image to the target edge

node to when the user receives the result, such as a string

containing the name of the recognized person. The same goes

for navigator or live translation applications, in which the user

device sends GPS coordinates or spoken words and receives

calculated path or translated words from the remote edge node.

We assume that these applications are stateless. Thus, their

tasks can be re-offloaded on another available node in the case

of unavailability or failure of the current node. In the MEC

Fig. 1. Edge offloading model.

scenario, offloading of the upcoming tasks can be moved to

a more suitable edge node, to improve user experience and

facilitate smooth movement of mobile clients. However, each

handoff increases execution time due to the initialization of a

VM [6] or a container [8], [9] on the target edge node. Hence,

controlling frequent handoffs, while ensuring required Quality

of Service (QoS), can also reduce monetary cost and improve

application performance.

A. Offloading model

Fig. 1 depicts the proposed offloading model. It starts when

a user device receives user input in an application suitable

for offloading. In step 1a, the user device starts discovery of

the edge nodes in one-hop proximity using approaches from

literature [10], [11]. Several edge nodes that are able to host

the offloaded task are present on the physical region around the

user illustrated with hexagons. We call them compatible edge

nodes. Those nodes send their actual bandwidth, processor

and latency capacities to the user device in step 1b. Using the

collected edge node parameters, fuzzy logic-based target node

selection starts in step 2, output of which is one target edge

node. Using the result from the previous step, the application

task is offloaded to the selected node. During step 3, a con-

troller perceives the RT of each application’s offloaded task.

Meanwhile, the user device continuously offloads upcoming

tasks until the controller output falls below the permitted

threshold affected by the error, i.e. the difference between

the desired and the measured RT. That happens in cases

such as node overload or failure, network congestion, or

user moving further away from the currently utilized node

as shown in step 4. Accordingly, based on calculated control

output, the controller can activate steps 1–3 again, searching

for compatible nodes in the current physical region around

user (step 1a) to offload subsequent tasks. Hexagon regions

are symbolic in Fig. 1 and overlapping in the coverage areas

of nodes is possible.

(a) Input MFs for the bandwidth. (b) Input MFs for the CPU. (c) Input MFs for the latency. (d) Output MFs for node suitability.

Fig. 2. Fuzzy inference system input and output sets.

B. Discussion
In our approach, it is possible to make offloading decision

and node selection on the user device, since fuzzy logic

simplifies system modeling by avoiding complex calculations.

This way, a centralized orchestrator such as a cloud is not

necessary. This allows, first, to avoid a single point of failure

and ensure higher privacy of user data. Second, only client

device and edge nodes are aware of perceived RT, precise

user location needed to discover proximate nodes, and local

network conditions. It is not efficient to transfer all this

information to the cloud each time for a decision. To avoid side

effects of local execution of the controller, such as increased

battery consumption, possible computing overhead on the user

device is reduced not only by a low computational complexity

but also with infrequent execution of steps 1 and 2 described

in Section II-A. This is because we perform a handoff only

when the tasks’ perceived RT is unacceptably deteriorated

according to the controller, and not whenever there is an

idle edge node in vicinity. To unburden the user device even

more, another possible solution is to run the controller on a

selected edge node. Once the handoff is performed to a more

suitable node in user vicinity, the controller is initiated on

that node as well. In the case of node failure, fallback design

starts a fuzzy node selection on the user device, which then

offloads tasks and triggers the controller on the selected edge

node. This way, a user device battery lifetime is enhanced,

but the edge node is additionally overwhelmed and loaded

with the controllers of all running applications. However, this

alternative implementation is out of the scope of this paper.

III. FUZZY LOGIC-BASED EDGE NODE SELECTION

Fuzzy logic, unlike classical Boolean logic, supports multi-

ple intermediate values for attributes, rather than restricting

them to binary extremes, making a decision based on in-

between inputs [12]. This makes fuzzy inference systems ef-

fective in dealing with uncertainties and imperfect information

among multiple input variables. In the fuzzy decision algo-

rithm we proposed, three input parameters are used, namely:

bandwidth capacity, processing power and latency. The edge

node with the highest fuzzy output value is the most suitable

to execute the offloaded task. We describe the three steps of

the fuzzy reasoning mechanism as follows.

TABLE I
FUZZY INFERENCE SYSTEM RULES.

BW CPU LAT OUT BW CPU LAT OUT

LBW LCPU - HU MBW HCPU HLAT N
LBW MCPU HLAT HU MBW HCPU MLAT D
LBW MCPU MLAT HU MBW HCPU LLAT D
LBW MCPU LLAT U HBW LCPU HLAT D
LBW HCPU HLAT HU HBW LCPU MLAT D
LBW HCPU MLAT U HBW LCPU LLAT HD
LBW HCPU LLAT U HBW MCPU HLAT D
MBW LCPU HLAT U HBW MCPU MLAT HD
MBW LCPU MLAT U HBW MCPU LLAT HD
MBW LCPU LLAT N HBW HCPU - HD
MBW MCPU - N

A. Fuzzification

During fuzzification, input parameters are collected and

mapped to relevant fuzzy sets with a membership value (or

degree of membership) between 0 and 1 using the membership

functions (MF) curve [13]. We use nine Gaussian MF to

define input variables and five triangular MF for output, as

they proved effective in [14] and in our evaluation. First, we

define a Gaussian MF for each of three associated linguistic

levels: low (L), medium (M) and high (H), for all the

inputs: bandwidth (BW), processing power (CPU) and latency

(LAT) as shown in Fig. 2a–2c. In addition, following trian-

gular membership functions are used to represent the output

(Fig. 2d): Highly Undesirable (HU), Undesirable (U), Neutral
(N), Desirable (D), Highly Desirable (HD). To demonstrate

fuzzification through an example assume that the following

measures for the input parameters are collected: 45 Mbps of

a bandwidth, 37 MIPS of processing capacity and 30 ms of

latency. As shown with dashed lines in Fig. 2a–2c, we can

observe that the BW value 45 Mbps lies in fuzzy set medium
with a degree of membership (d.o.m.) 0.07 and in high with a

d.o.m. 0.8; CPU value 37 MIPS lies in medium with a d.o.m.

0.08 and in high with a d.o.m. 0.77; latency value 30 ms lies

in low with a d.o.m. 0.54 and in medium with a d.o.m. 0.18.

B. Inference engine

Inference engine infers the fuzzy output from the above

defined fuzzy inputs through the if-then rule evaluation. Con-

sidering three possible values (L, M , H) for three inputs,

TABLE II
DEFINITIONS.

Symbol Definition
Cnodes Vector containing all discovered compatible nodes and

parameters: BW, CPU, LAT
tnode Index of a target node selected to serve offloading task

bw, cpu, lat Bandwidth, processor and latency values
fv Output value that fuzzy logic returns
hfv Highest output value found

FuzzyLogic() Call of fuzzy inference system mechanism

Algorithm 1 Fuzzy logic - target node selection

1: function FUZZYLOGICSELECTION(Cnodes)

2: tnode, bw, cpu, lat, fv, hfv ← 0
3: for i = 0 to |Cnodes| − 1 do
4: bw, cpu, lat← Cnodes[i].bw, .cpu, .lat
5: fv ← FuzzyLogic(bw, cpu, lat)
6: if fv > hfv or hfv == 0 then
7: hfv ← fv
8: tnode ← i
9: end if

10: end for
11: return Cnodes[tnode]
12: end function

we obtain 33 possible rule combinations as shown in Table I,

where some rules are merged for brevity. Using these rules, an

example of the reasoning process can be expressed as follows:

if the BW is high, CPU is high, and LAT is medium, then

consider this location as highly desirable for task offloading.

Given prior exemplary inputs and their corresponding fuzzy

sets (Medium/High BW, Medium/High CPU, Low/Medium

LAT), eight rules are triggered in this step with the fuzzified

output calculated as the minimum of the three membership

values. Therefore, two implicated rules of {MBW (0.07),
MCPU (0.08), LLAT (0.54)/MLAT (0.18)} give outputs in

fuzzy sets Neutral to the extent of 0.07. Another two rules

of {MBW (0.07), HCPU (0.77), LLAT (0.54)/MLAT (0.18)}
give outputs in fuzzy sets Desirable to the extent of 0.07; both

rules {HBW (0.8), MCPU (0.08), MLAT (0.18)/LLAT (0.54)}
give output Desirable to the extent of 0.08; and finally both

rules {HBW (0.8), HCPU (0.77), LLAT (0.54)/MLAT (0.18)}
give output Highly Desirable to the extent of 0.54 and 0.18

respectively.

C. Defuzzification

In the defuzzification step, degree of membership of the out-

put linguistic variables are converted to a resulting crisp output

value. Following the above obtained edge node suitability val-

ues resulting in N (0.07), D (0.07 and 0.08) and HD (0.54 and

0.18), their maximum values result in the bounded area shaded

in Fig. 2d. We use the widely accepted defuzzification method

center of gravity (COG) [15] (x∗ =
∫
μ(x)xdx /

∫
μ(x)dx

where μ is the bound formed by the output d.o.m and x is

the edge node suitability). COG of the aforementioned area

results in the output x∗ = 0.8, highlighted with a red dot.

D. Node selection

Algorithm 1 shows the fuzzy logic-based target node selec-

tion, whereas Table II describes the notation used. The output

of the fuzzy logic, which varies between 0 and 1, describes

the suitability of each edge node for the offloading task, where

greater values mean higher suitability. The algorithm runs on

a user device and gets the list of all compatible nodes as

the input. In lines 3 to 10, it calculates the fuzzy value for

each edge node in a list considering bandwidth, processor

and latency parameters. Parameters (line 4) are obtained from

each single element in the compatible nodes list and mapped

to the fuzzy sets according to their membership functions

(line 5) as described in Section III-A. In addition, the inference

rules from Table I are applied as explained in Section III-B.

Defuzzification returns a quantitative value for each node,

saved in variable fv . Then, among the compatible nodes we

select the one with the highest score (lines 6 to 9). The

algorithm returns the edge node with the highest fuzzy value

as the most appropriate one to serve offloaded task (line 11).

Computational complexity of the proposed Algorithm 1 is

O(n) due to the for loop iteration (line 3), and related to n,

the number of discovered nodes. Complexity of Fuzzy logic

steps (line 5), is independent of n, hence they take constant

time. Proposed algorithm targets only the edge nodes with low

latency, in close proximity to user. Therefore, n is not expected

to be large enough to cause notable delay.

IV. HANDOFF CONTROLLER

In a standard feedback control loop architecture, the con-

troller periodically adapts the value of its output, ctli to reduce

or eliminate the error. The error is the difference between the

desired and measured output, strongly affected by the uncon-

trollable disturbances in the target system. In our approach, the

system is the application offloaded on the Selected Edge Node
(Fig. 3) and disturbances are the sudden changes in the traffic

load, network and hardware failures as well as user mobility.

Despite disturbances, mobile applications are expected to

provide certain performance guarantees and response time has

strong impact on user satisfaction. Therefore, we define the

desired RT, r̃t, that is a reference input in our model predefined

by the developer, user or provider. The measured output at

iteration i, rti, is the application’s RT and it is used as a

feedback variable. The difference between these two values is

the control error, ei (1) and a single iteration i is the time it

takes for the execution of one offloaded task.

ei = r̃t− rti (1)

At each iteration i, ctli value is compared with current

control threshold value, τi, which we compute based on (2) in

a Threshold Evaluation phase (Fig. 3). It changes dynamically

based on how many tasks of the application suffer deteriorated

response time on the same node. Here, deterioration means

failing to achieve the performance goals of the application

since measured RT becomes higher than the desired one.

Therefore, more tasks with deteriorated performance results

in higher τi and higher probability that ctli will fall under it.

Fuzzy
Inference
System

{2} COG
 Output Node

Selection
Algorithm

Handoff
Controller

Threshold
Evaluation

{6} Control
Output

{5}
Error

{7} Task
Offload

ksk

{7} Handoff Execution

{3} Optimal
Node Selected

{8} Measured RT

Latency
CPU

Bandwidth
USER DEVICE

EDGE
NODES

SELECTED
EDGE
NODE

{1}

Desired
{4} RT

Fig. 3. Information flow within the proposed architecture.

When that happens, a Handoff Execution begins along with

Fuzzy Inference System steps and a Node Selection Algorithm
among the discovered nodes, as described in Section III. This

process is depicted in Fig. 3. Execution terminates when there

is no more user input in application or if application has no

more task to offload. Otherwise, we offload next task and con-

tinue to use controller for calculating ctli of the current task.

τi = 1− 1

(1 + Number of Deteriorated Tasks)
(2)

The controller output ctli, is computed using equation (3),

originally proposed in [16]. We adopt this approach since it is

a generic yet practical method with mathematical background

to devise ad-hoc control solution. ctli is based on its previous

value, control error and value of α and pole, described as

follows. The system model parameter α is estimated at each

control interval based on the effect of the ctli on the measured

RT, (αi = rti/ctli). A tunable parameter called pole, influences

the stability of the controlled system, and determines how

fast the system approaches to its equilibrium. To maintain

the system stability, the pole values should be between zero

and one [16]. The closer the pole is to 0, the shorter is

the settling time since the controller reacts faster and more

aggressively. On the contrary, setting the pole close to 1

produces a more robust and conservative controller, which

does smaller adjustments of the control output and takes

smaller steps towards the goal.

ctli = ctli−1 +
1− pole

αi
· ei (3)

We provide a simplified example in Fig. 4, to demonstrate

clearly how the proposed controller works. Assume the desired

RT of an application running on the user device to be 400 ms.

However, we observe an increasing trend in measured RT that

goes over 400 ms after the first three tasks. Controller output

is set to 1 and control threshold to 0 in the beginning, and their

values are always in the range [0, 1]. Controller values change

after offloading the fourth task since it has deteriorated RT. In

this example, the pole is set to 0.7 and measured RT after the

seventh task is 600 ms. At this point the calculated control

value falls under the control threshold. Therefore, the eighth

task will be executed on another edge node where control

1 2 3 4 5 6 7
desiredRT 400 400 400 400 400 400 400
measuredRT 300 350 400 450 500 550 600
controlOutput 1 1 1 0 9667 0 9087 0 8344 0 751
controlThreshold 0 0 0 0 5 0 6667 0 75 0 8

0

0 2

0 4

0 6

0 8

1

1,2

0

100

200

300

400

500

600

C
on

tro
lle

r v
al

ue
s

R
es

po
ns

e
tim

e
(m

s)

Task number

desiredRT measuredRT controlOutput controlThreshold

Fig. 4. Simplified example of controller work, with the pole set to 0.7 and
the desired RT of 400 ms.

output and threshold will be again set to their default values 1

and 0, respectively. On the same configuration, controller with

the pole 0.3 reacts faster and performs handoff after the fifth

task with 550 ms measured RT, whereas controller with pole

0.9 is more conservative and handoff is needed only after the

eighth task and 700 ms measured RT. These two alternative

controllers are omitted for brevity.

Our results in Section VI show that performing the service

handoff each time when measured RT is deteriorated (indicated

with (4) in Fig. 4) is too frequent and costly in terms of time

and money. Our controller is able to avoid frequent handoffs

and decide whether it is an appropriate moment to change the

application deployment to a more powerful and less saturated

node in the vicinity. Sometimes, there might not be any other

node that is more suitable in terms of its calculated fuzzy

value for the execution of the upcoming task. In such cases,

we propose to continue offloading future tasks on the current

node without handoff. Other scenarios such as cloud or local

execution are beyond the scope of this paper.

V. EXPERIMENTAL ENVIRONMENT

A. Simulation environment

Research on Edge computing is still in its infancy and at the

time we write, no real-world MEC infrastructure is available

to perform our experiments. IFogSim [17] and EdgeCloudSim

[18] are the existing simulators, widely used in academia.

However, they do not support either mobility models or

handoff mechanisms and do not allow to specify when and

where to migrate. Therefore, we build a simulation framework

using Java programming language to perform the evaluation

of our approach. It is a discrete event-based simulator and

starts with offloading the first task and then iterates through

all the application tasks, considered as the device workload.

Each generated task is offloaded using the fuzzy handoff

controller on a dynamic edge computing infrastructure. During

this process, simulator logs the statistics about the tasks RT,

the number of a performed handoffs and the time of the

node usage. For the sake of reproducibility and to foster

further research, we made all source code publicly available1.

1https://github.com/BasFa/FHC-simulator/

GUI OUTPUTFIND_
MATCH

INIT

DETECT
_FACE

(a) Facerecognizer application.

CONF_
PANEL GUICONTROL

MAPS

TRAFFIC

PATH_
CALC

GPS VOICE_
SYNTH

SPEED_
TRAP

(b) Navigator application.

Fig. 5. DAG models of real-world mobile applications with their offloadable
(light nodes) and not-offloadable (dark nodes) tasks.

All simulation results are obtained on a 64-bit Windows 10

machine, configured with a 2.70-3.50 GHz Intel i7-7500U

CPU and 16 GB memory. To measure the benefits of our

approach accurately and to ensure a confidence interval of

95%, we repeat the simulations 100000 times, each time on

a different edge node topology generated. Fuzzification, infer-

ence, and defuzzification steps of fuzzy reasoning mechanism

are implemented utilizing jFuzzyLogic library [19].

B. Mobile applications

Applications are modeled as a set of tasks (T). Each task

is defined as T (DATA,MI), where DATA is the size of task

data and MI is the task length in millions of instructions. To

the best of our knowledge, there are no real-world traces to

cover these mobile application parameters, available to the

research community at the present time. Therefore, we employ

Directed Acyclic Graph (DAG) models of real-world mobile

applications, used also in other works such as [20], [21].

Two popular applications with strong computational require-

ments are considered, namely, Facerecognizer and Navigator
(Fig. 5). For each DAG, nodes represent the application tasks

and edges are the dependencies between them. Some tasks

are offloadable (light nodes), and others, like graphical user

interface (GUI) rendering or GPS usage, are device dependent

and hence not offloadable (dark nodes). Facerecognizer appli-

cation consists of five compute-intensive tasks and navigator

application of nine data-intensive tasks defined in [20]. The

offloadable tasks structure and requirements are outlined in

the first three columns of Tables III and IV. The tasks are run

sequentially with the respect of the topological order of the

DAG. The goal of the Facerecognizer application is to identify

faces on a given image using image processing, whereas in the

navigator application the goal is to show the fastest route on

the map, and recalculate it in case of changes. Observing these

applications, we define realistic sizes for the image {1, 5}MB

TABLE III
FACERECOGNIZER APPLICATION SETTINGS

Task MI
DATA
(MB)

RT (ms)
1MB

RT (ms)
5MB

FIND MATCH 1
λ

= 4 1
λ

= image 413 686

INIT 1
λ

= 4 1
λ

= image 414 687

DETECT FACE 1
λ

= 8 1
λ

= image 686 959

TABLE IV
NAVIGATOR APPLICATION SETTINGS

Task MI
DATA
(MB)

RT (ms)
5MB

RT (ms)
10MB

RT (ms)
15MB

CONTROL 1
λ

= 2 5 552 552 552

MAPS 1
λ

= 3 1
λ

= map 619 955 1304

TRAFFIC 1
λ

= 5 1
λ

= map 754 1089 1439

PATH CALC 1
λ

= 5 1
λ

= map 754 1090 1439

and map {5, 10, 15}MB and use them as 1
λ parameter of the

exponential distribution at each simulation.

During a single simulation, we measure how long it takes

to execute 200, 500 and 1000 tasks, how many handoffs are

made, and what is the monetary cost. Such high number of

tasks are not unexpected, since we do not consider offloading

a single task by a static user, but a moving user who continues

to use the application for a longer period of time as a

physical distance between the user and node increases. We

can think of the navigator application used in a vehicle or by

a pedestrian where traffic calculation, speed trap indication,

route updates and recalculation followed by voice instruc-

tions are repetitively triggered. Another use case includes

surveillance/tracking applications with face/object detection

functionalities; or a tourist that walks through the city and

explores it using a augmented reality glasses with face/object

recognition feature.

C. Edge nodes and the network infrastructure

To simulate a heterogeneous MEC infrastructure for eval-

uation, we define an edge node as EN (BW ,MIPS ,LAT),
where BW represents available bandwidth between the user

and the node, MIPS represents the millions of instructions that

can be executed per second, and LAT is the network latency.

The closer the user is to the edge node, the lower is the latency.

Previous work shows that heavy-tailed distribution is a

good fit to approximate geographical variety of network

latency [22], [23]. We use Pareto distribution to generate

edge nodes latencies and choose 1.25 as the shape parameter,

which is experimentally shown to be more similar to real-

world values [24]. Similarly for bandwidth values, we follow

the methodology in the most-widely used random network

topology generator, BRITE [25], which use Pareto distribution

among others. Pareto is also a good approximation for the

CPU utilization of virtualized servers in data centers [26]. We

take scale parameters for the distributions from [20], where

average CPU power is 15 MIPS, average latency is 15 or 54 ms

depending on Wi-Fi or cellular (3G) connection, and average

(a) Bandwidth PDF of the two aggregated
Pareto distributions with scale parameters 7.2
Mbps for 3G and 32 Mbps for Wi-Fi.

(b) Latency PDF of the two aggregated Pareto
distributions with scale parameters 15 ms for
Wi-Fi and 54 ms for 3G.

(c) CPU PDF of Pareto distribution with a
scale parameter 15 MIPS.

Fig. 6. Edge topology parameters for 2000 generated nodes.

bandwidth is 32 Mbps for Wi-Fi or 7.2 Mbps for 3G. Resulting

probability density functions (PDF) are shown in Fig. 6.

In our simulation, we consider the impact of the network

and edge nodes’ workload on applications’ QoS require-

ments. Due to the novelty of MEC technology, and concerns

about making commercial systems’ workload traces publicly

available, we uses dynamic workloads at edge nodes, where

percentage BW and CPU change (ΔBW and ΔCPU) is cho-

sen uniformly at random in each time step. The range of

the random function is also unique to each edge node in

order to generalize our results with various workload trends

(increasing or decreasing with different slopes). To that end,

Δi is chosen from the range [xi, yi] where xi = rand(−1, 1),
yi = rand(−1, 1), and xi < yi for all i ∈ {BW,CPU}. Limits

xi and yi are fixed and unique to each node. Positive values

represent increasing trends and vice versa. When two values

are farther from each other, workload trend is highly unstable.

In this way, we are able to cover many possible workload

characteristics. For latency changes, we choose a value of

ΔLAT between 0 and 1 using uniform random distribution

and it always represents the percentage of increase since we

assume that the user is moving further away from the selected

node. Initially, the logical topology consists of 20 edge nodes,

but each time handoff should be done due to RT deterioration

and user movement, a new scope of 20 nodes is found. We

consider the previous nodes unavailable from that time on.

D. Performance measures

Our aim is to offload tasks on the selected target node

and keep the response time below a predefined set point. The

response time includes the communication delay, the network

transmission delay of sending data to the edge server, and the

execution time on that server [3]. The communication delay

is the perceived two-way latency between client and edge

(2∗EN (LAT)). The network transmission delay is measured

as the data size of task sent and response received, divided

with the available bandwidth (2 ∗ T (DATA)/EN (BW)). We

assume that sent and received data have the same size. The

execution time on the server is measured as the number of

instructions divided by edge MIPS (T (MI)/EN (MIPS)).
The full response time calculation is given in (4).

RT = 2 ∗ EN (LAT) + 2 ∗ T (DATA)
EN (BW)

+
T (MI)

EN (MIPS)
(4)

In case of RT deteriorations, controller triggers a handoff pro-

cess to a more appropriate node. However, each handoff brings

additional overhead and increases the application execution

time. For generality, we cover three empirical values for this

additional delay: 0.42s when the application image is already

downloaded [9], 15.8s when launching a container [8], or 39.3s
when launching a VM on the newly selected edge node [6].

Monetary cost (M) is calculated using Amazon EC2, On-

Demand Pricing2 for the region EU (London) as shown in (5),

since similar pricing can be expected for edge resources once

the edge infrastructure becomes publicly available. The unit

amount price is charged only for what is used by the second

with the minimum of a minute, e.g. $3.00× 10−5 or $6.33×
10−5 per second for m5.large and m4.large instances. The

price is based on the time when the edge node is initialized and

the first task is executed, until the time the resources on that

node are released due to the performed handoff. We consider

that each handoff brings an additional monetary cost if the

node n is utilized less than a minute. This is reflected in our

cost calculation in (5).

M =
∑
n

max(timen, 60) ∗ price (5)

VI. NUMERICAL RESULTS

In this section, first we demonstrate that the fuzzy logic node

selection can minimize the application RT. In addition, we

define a model for desired RT used in our feedback loop. Then,

we evaluate the controller through exhaustive simulation.

A. Fuzzy logic node selection

We compare the proposed policy (Fuzzy) to two other

baseline strategies of choosing the node with the highest

bandwidth (Greedy) and offloading to the nearest edge node

(Nearest), which is a very common approach in the literature

[8], [27], [28]. In our implementation, the nearest node to the

user is the one with the lowest latency value. The proposed

2https://aws.amazon.com/ec2/pricing/on-demand/

0 1000 2000 3000 4000

Nearest
Greedy

Fuzzy

Nearest
Greedy

Fuzzy

Nearest
Greedy

Fuzzy

Nearest
Greedy

Fuzzy
1

5
10

20

time (ms)

Im
ag

e
si

ze
 (M

B
)

FIND_MATCH

INIT

DETECT_FACE

(a) Facerecognizer application.

0 1000 4000 5000

Nearest
Greedy

Fuzzy

Nearest
Greedy

Fuzzy

Nearest
Greedy

Fuzzy

Nearest
Greedy

Fuzzy

5
10

15
25

2000 3000
time (ms)

M
ap

 si
ze

 (M
B

)

CONTROL

MAPS

TRAFFIC

PATH_CALC

(b) Navigator application.

Fig. 7. RT perceived for offloadable tasks of Facerecognizer and Navigator applications.

approach, as shown in Fig. 7, offers substantial gains over

those baseline approaches.

For the Facerecognizer application (Fig. 7a) with an image

size of 1 MB, Fuzzy approach decreases the average RT, in

comparison to the Nearest approach, by 4.35% and in compar-

ison to the Greedy approach, by 10.93%. This is because we

consider more relevant parameters (BW, CPU, LAT) for this

computation intensive task. However, considering task sizes

in range from 5 to 20 MB, the Greedy approach outperforms

the Nearest, since increase in data size puts more weight on

data transfer time. In these cases, comparing to the Greedy
approach, ours decreases the time cost by 6.65% in the best

case and by up to 1.73% in the worst case.

For the Navigator application (Fig. 7b) with a map size

of 5 MB, our Fuzzy approach decreases the average RT, in

comparison to the Greedy approach, by 5.99%. Whereas, for

a 25 MB task, the difference between our and the Greedy
approach decreases to 1.12%, because network transmission

delay gets more dominant as the data size of task is increased.

Accordingly, for higher data sizes other methods might out-

perform ours, but such a large data size is unrealistic for the

applications relevant to edge computing. Obtained results con-

firm our assumption that taking into account parameters such

as computation power, distance from the user and bandwidth

in dense edge environment brings substantial RT benefits.

After each offloaded and processed task, the client receives

the response and records the RT. Different applications have

different requirements, especially in terms of RT, which are

assigned by the application developer, service provider or

user. Using the results from the simulations above, we define

the desired RT for each application task. It is calculated

as the average task RT measured in Fuzzy, Greedy and

Nearest policy, with an allowed additional overhead of 50%.

This overhead is included since used exponential distribution

results in wide range of MI and DATA values. With higher

granularity this overhead can be reduced or removed. However,

we present the desired response time estimate calculated for

image = {1, 5}MB and map = {5, 10, 15}MB in the remaining

columns of Tables III and IV respectively.

B. Handoff controller

As explained before, node selection also affects the number

of handoffs made during the application execution. For the

second set of experiments to evaluate the controller, we use the

pole value of 0.7 based on our empirical analysis of various

results. However, due to the expected high initial monetary

cost (calculated in (5)), we set pole value to 0.9 during the

first minute of execution to make a controller more robust and

less prone to handoffs. A device workload is composed of the

Facerecognizer and Navigator applications’ workload executed

sequentially by the user.

Our approach, Fuzzy node selection with Handoff Con-

troller (FHC), is compared to two baselines. In both, to make

the comparison fair, we choose the nodes with the fuzzy

selection algorithm, since we show that it outperforms Greedy
and Nearest offloading (Section VI-A). In the first one (Never
Handoff), all tasks are offloaded to the same single node

that is found in the beginning of the application execution.

No handoffs are made even if RT violations occur. In the

second scenario (Always Handoff) the user starts offloading

tasks to one node and performs handoffs as soon as the

previous offloaded task experiences the first RT violation.

We show that the proposed FHC approach offers significant

improvement over those baseline approaches. In Fig. 8 we

present percentage improvement in terms of monetary sav-

ings (Monetary) and average response time. Application RT

includes the additional time cost each handoff can bring,

as follows: 39.3 seconds for launching a VM on the newly

selected node (Virtual Machine 39.3s), 15.8 seconds for a

container (Container 15.8s) and 0.42 seconds for launching

a container when application image is already downloaded

(Already Deployed 0.42s). Negative values show the cases

when other approaches outperform FHC.

Fig. 8a shows the improvement our approach brings com-

paring to Never Handoff. For a workload with 200 and 500

tasks, FHC brings 138.04% and 50.12% additional monetary

cost respectively, since the user stays quite near to the initially

selected node and latency does not significantly increase the

RT and hence the monetary cost with the baseline approach.

The longer the application execution is, e.g. 1000 tasks, FHC

Monetary
Already

Deployed
0.42s

Container
15.8s

Virtual
Machine

39.3s
200 tasks -138 04 11 19 -19 23 -65 7
500 tasks -50 12 43 93 30 68 10 41
1000 tasks 53 85 81 17 77 16 71 03

-150

-100

-50

0

50

100
Im

pr
ov

em
en

t [
%

]

Cost
200 tasks 500 tasks 1000 tasks

(a) FHC and Never Handoff.

Monetary
Already

Deployed
0.42s

Container
15.8s

Virtual
Machine 39.3s

200 tasks 84 47 14 17 74 56 83 86
500 tasks 84 68 17 93 76 66 86 14
1000 tasks 85 3 16 71 76 23 86 1

0

20

40

60

80

100

Im
pr

ov
em

en
t [

%
]

Cost
200 tasks 500 tasks 1000 tasks

(b) FHC and Always Handoff.

Fig. 8. Approaches comparison in terms of monetary and time costs that handoffs bring.

brings up to 53.85% monetary saving, since the task RT

is increasingly shorter due to handoff to the closer nodes

with better performance. In total application response time

including the handoff time, FHC brings improvements up

to 81.17%. Therefore, these increments in monetary cost

are outweighed by shorter response time, except for short

workload with 200 tasks combined with very high handoff

time of 15.8s and 39.3s, in which case FHC takes from 19.23%

up to 65.7% longer RT.

Fig. 8b shows the comparison of our approach to the Always
Handoff approach. Improvements in RT are not affected by

the number of offloaded tasks, due to continuous handoffs to

the closer better performing nodes. Whereas in Never Handoff
approach, workloads with a bigger number of executed tasks,

result in longer RT due to the latency increase as the user

is moving further away from the initially selected node.

Moreover, FHC lowers the number of handoffs and improves

application RT by 74.56% and 86.14%, considering handoff

time cost of 15.8s and 39.3s respectively. In cases when

handoff brings lower time cost, i.e. 0.42s, improvements in

the response time are smaller and go up to 17.93%. This is

due to the fact that our handoff controller postpones handoff

until the controller’s output falls under the control threshold,

consequently some tasks perceive deteriorations in RT and the

handoff time cost is not large enough to compensate even

more. Furthermore, due to the lower number of handoffs,

FHC brings monetary savings of up to 85.3% by means of

the handoff controller.

VII. RELATED WORK

The advantages of edge technologies is proven in many use

cases [7] with some major research challenges open, such as

dealing with frequent handovers among edge servers caused

by user mobility. Different offloading techniques with mobility

management covered for the edge context are discussed in

[29]. The effectiveness of edge infrastructure employment to

support mobile application is considered in [30]. As distinct

from these works, we also consider monetary costs. Offloading

cost models have been discussed in [20], [31]. However, they

compare user cost in interplay between remote cloud and edge

cloud usage and not in terms of handoffs.

Analogous to the seamless handoff or handover in cellu-

lar networks, where the client is changing the base station

while communicating, the edge node handoff as well allows

interruption-free client mobility [8], [32]. With a key differ-

ence that intensive task computation has to be done in edge

offloading scenario. Therefore, the edge node has to be pre-

provisioned with needed capabilities or all the runtime states

of offloaded workload must be transferred to the node, as

authors emphasize in [8]. To overcome the differences in

a fog computing handoff mechanism, with those studied in

cellular networks, authors in [32] define general architecture

components for location-based VM migration. Moreover, they

emphasize the importance of a decision-making process that

triggers VM migration in fog computing, not yet covered in the

literature. Authors in [33] used a control theory to synthesize a

controller for vertical memory elasticity of cloud applications.

However, authors do not consider horizontal scaling important

in large-scale volatile edge computing scenarios. While most

studies aim to reduce the handoff transfer time [6], [8], the

novelty of our work is controlling the number of handoffs

both by selecting the optimal target node and by monitoring

applications performance with a respect of response time

objectives. Moreover, we consider the monetary cost of hosting

the service at the MEC.

Rather than selecting target node in dense environment,

there are many studies that focus on what to offload [21], [34]

and whether to execute a task locally or offload it to edge

or cloud as in [35], [36]. However, a fog service placement

problem, with the goal of reducing the execution time of

applications, implemented as integer linear programming is

discussed in [27]. Works like [8], [27], [28] perform offloading

to the nearest edge node, without considering other parameters

such as significant differences in computation capabilities

nodes may have. Therefore, authors in [11] propose cloudlet

selection heuristic based on requirements of the application

and capability and stability of the mobile cloudlet. Nonethe-

less, they do not consider handoffs among servers.

VIII. CONCLUSION

The main contributions of this study can be summarized

as follows. First, we describe our offloading model with the

following steps: (i) optimal node selection algorithm using

fuzzy logic, which outputs a single node; and (ii) handoff-

decision-making via control theoretical approaches based on

application performance. Furthermore, we design a simulation

framework and we use DAG models of real-world applications

for the evaluation. Our experimental results demonstrate the

benefits our controller brings in reducing the monetary cost

by up to 85.3% through avoiding frequent handoffs. We also

compare the initialization time cost for different configurations

(VMs and containers) and achieve improvements in terms of

application response time by up to 86.14% in comparison to

baseline approaches. As future work, we plan to evaluate our

approach through real-world user mobility traces. Moreover,

we plan to handle workload balancing more explicitly and in

combination with proactive handoff control.

ACKNOWLEDGMENT

The work described in this paper has been funded through

the Rucon project (Runtime Control in Multi Clouds), FWF

Y 904 START-Programm 2015.

REFERENCES

[1] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[2] M. Satyanarayanan, “Pervasive computing: vision and challenges,” IEEE
Personal Communications, vol. 8, no. 4, pp. 10–17, 2001.

[3] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in IEEE Int’l
Conference on Distributed Computing Systems, 2017, pp. 2573–2574.

[4] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller,” International journal of man-machine
studies, vol. 7, no. 1, pp. 1–13, 1975.

[5] A. N. Toosi and R. Buyya, “A fuzzy logic-based controller for cost
and energy efficient load balancing in geo-distributed data centers,” in
IEEE/ACM International Conference on Utility and Cloud Computing,
2015, pp. 186–194.

[6] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and M. Satya-
narayanan, “Adaptive vm handoff across cloudlets,” CMU School of
Computer Science, Tech. Rep., 2015.

[7] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[8] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers
via docker container migration,” in ACM/IEEE Symposium on Edge
Computing. ACM, 2017, p. 11.

[9] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwälder,
“Incremental deployment and migration of geo-distributed situation
awareness applications in the fog,” in ACM International Conference
on Distributed and Event-based Systems. ACM, 2016, pp. 258–269.

[10] G. A. Lewis, P. Lago, and P. Avgeriou, “A decision model for cyber-
foraging systems,” in Working IEEE/IFIP Conference on Software
Architecture, 2016, pp. 51–60.

[11] S. Chilukuri, S. Bollapragada, S. Kommineni, and K. C. C., “Raincloud
- cloudlet selection for effective cyber foraging,” in IEEE Wireless
Communications and Networking Conference, 2017, pp. 1–6.

[12] L. A. Zadeh, “Fuzzy sets,” in Fuzzy Sets, Fuzzy Logic, And Fuzzy
Systems. World Scientific, 1996, pp. 394–432.

[13] J. Roger and G. Ned, “Fuzzy logic toolbox for matlab,” The Math Works
Inc., USA, Tech. Rep., 1995.

[14] A. V. Dastjerdi and R. Buyya, “Compatibility-aware cloud service
composition under fuzzy preferences of users,” IEEE Transactions on
Cloud Computing, vol. 2, no. 1, pp. 1–13, 2014.

[15] Y. Bai and D. Wang, “Fundamentals of fuzzy logic control - fuzzy sets,
fuzzy rules and defuzzifications,” in Advanced Fuzzy Logic Technologies
in Industrial Applications. Springer, 2006, pp. 17–36.

[16] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Brownout: Building more robust cloud applications,” in International
Conference on Software Engineering. ACM, 2014, pp. 700–711.

[17] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[18] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment
for performance evaluation of edge computing systems,” in Second
International Conference on Fog and Mobile Edge Computing (FMEC).
IEEE, 2017, pp. 39–44.

[19] P. Cingolani and J. Alcala-Fdez, “jfuzzylogic: a robust and flexible
fuzzy-logic inference system language implementation,” in 2012 IEEE
International Conference on Fuzzy Systems. IEEE, 2012, pp. 1–8.

[20] V. De Maio and I. Brandic, “First hop mobile offloading of dag compu-
tations,” in IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. IEEE, 2018, pp. 83–92.

[21] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in International conference on mobile systems,
applications, and services. ACM, 2010, pp. 49–62.

[22] W. Zhang and J. He, “Modeling end-to-end delay using pareto dis-
tribution,” in International Conference on Internet Monitoring and
Protection. IEEE, 2007, pp. 21–21.

[23] T. Høiland-Jørgensen, B. Ahlgren, P. Hurtig, and A. Brunstrom, “Mea-
suring latency variation in the internet,” in Int’l Conference on Emerging
Networking Experiments and Technologies. ACM, 2016, pp. 473–480.

[24] G. Hooghiemstra and P. Van Mieghem, “Delay distributions on fixed
internet paths,” Delft University of Technology, Tech. Rep., 2001.

[25] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: Universal topol-
ogy generation from a user’s perspective,” Boston University Computer
Science Department, Tech. Rep., 2001.

[26] S. Di, D. Kondo, and F. Cappello, “Characterizing cloud applications
on a google data center,” in International Conference on Parallel
Processing. IEEE, 2013, pp. 468–473.

[27] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards qos-aware
fog service placement,” in IEEE International Conference on Fog and
Edge Computing, 2017, pp. 89–96.

[28] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Communications
Magazine, vol. 55, no. 3, pp. 38–43, 2017.

[29] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[30] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud
Computing, vol. 4, no. 2, pp. 26–35, 2017.

[31] T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu, “Pricing policy
and computational resource provisioning for delay-aware mobile edge
computing,” in IEEE/CIC International Conference on Communications
in China. IEEE, 2016, pp. 1–6.

[32] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, “Towards virtual
machine migration in fog computing,” in International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing, 2015, pp. 1–8.

[33] S. Farokhi, P. Jamshidi, E. B. Lakew, I. Brandic, and E. Elmroth,
“A hybrid cloud controller for vertical memory elasticity: A control-
theoretic approach,” Future Generation Computer Systems, vol. 65, pp.
57–72, 2016.

[34] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload: an
efficient code partition algorithm for mobile cloud computing,” in IEEE
Int’l Conference on Cloud Networking. IEEE, 2012, pp. 80–86.

[35] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[36] T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu, “A cooperative
scheduling scheme of local and internet cloud for delay-aware mobile
cloud computing,” in IEEE Globecom Workshops, 2015, pp. 1–6.

